

INSTALLATION AND OPERATION

USER MANUAL

WWW.UNICORECOMM.COM

UM220-INS

多系统 GNSS 组合导航定位模组

Copyright© 2009-2022, Unicore Communications, Inc.

Data subject to change without notice.

修订记录

 版本号	修订记录	日期
Ver1.0.0	《和芯星通UM220-INS NL 用户手册》初版	2019 年6月
R2.0	《和芯星通UM220-INS NL 用户手册》release版本	2019年10月
R3.0	UM220-INS产品手册合并	2019-12-06
R3.1	更新功耗	2019-12-30
B3.2	VCC_RF电流限制说明删除	2020-03-03
ns.z	4.1常规注意事项:增加VCC掉电重启说明	2020-03-03
R3.3	SNASTAT InstallState增加-1对应说明	2020-06-04
R3.4	补充参数	2020-09-08
R3.5	4 硬件设计章节补充模组使用注意说明	2020-10-12
R3.6	添加产品PN	2021-04-22
R3.7	添加钢网说明	2021-06-23
R3.8	更新VCC电压、V_BCKP电压	2021-08-31
R3.9	章节4.2增加当用户对ESD要求较高时的说明	2021-11-17
	不使用热启动时,V_BCKP需接VCC;	
R3.10	GNSS芯片设计符合AEC-Q100;	2022-11-29
	更新驻波比	

免责声明

本文档提供有关和芯星通科技(北京)有限公司(以下简称和芯星通)产品的信息。 本文档并未以暗示、禁止反言或其他形式转让本公司或任何第三方的专利、商标、版权或 所有权或其下的任何权利或许可。

除和芯星通在其产品的销售条款和条件中声明的责任之外,本公司概不承担任何其它责任。并且,和芯星通对其产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。若不按手册要求连接或操作产生的问题,本公司免责。和芯星通可能随时对产品规格及产品描述做出修改,恕不另行通知。

对于本公司产品可能包含某些设计缺陷或错误,一经发现将收入勘误表,并因此可能导致产品与已出版的规格有所差异。如客户索取,可提供最新的勘误表。

在订购产品之前,请您与本公司或当地经销商联系,以获取最新的规格说明。

*和芯星通、UNICORECOMM、UFirebird 及其徽标是和芯星通科技(北京)有限公司的注册商标。其它名称和品牌分别为其相应所有者的财产。

版权所有 © 2009-2022, 和芯星通科技(北京)有限公司。保留所有权利。

i

前言

本手册向用户提供和芯星通 UM220-INS 系列模块的硬件特性,安装使用和性能指标等信息。

适用读者

本手册适用于对 GNSS 模块有一定了解的技术人员使用。

文档结构

本手册包括以下章节内容:

1产品介绍: 概述产品的功能与特性

2 产品安装:提供有关模块的安装指导

3 技术指标:提供模块的相关技术指标

4 硬件设计: 简要介绍模块的引脚功能定义、布线及硬件接口参考设计等

5 模块拆卸说明:拆卸模块的注意事项

6 包装: 模块标签、包装说明

7清洗: 清洗操作说明

8回流焊:模块炉温曲线及生产条件说明

目录

1	产品	3介绍	1
1.1	概〕	述	1
1.2	关钮	建指标	2
1.3	产品	品概述	3
2	产品	吕安装	5
2.1	安	装准备	5
2.2	硬值	件安装	6
3	技术	指标	7
3.1	电	气特性	7
3.2	运征	行条件	7
3.3	外开	形尺寸	7
3.4	引息	脚功能描述	9
3.5	PC	B 封装说明	11
4	硬件	- 设计	11
4.1	常規	规注意事项	11
4.2	天经	线	12
4.3	串口	口(UART)参考设计	13
4.4	里和	程计的连接	13
4.5	模均	块坐标与车体坐标	14
4.6	模均	快安装	15
2	1.6.1	安装说明	15
4	1.6.2	模块安装角定义	15
4	1.6.3	模块安装方式	16
4	1.6.4	相关消息协议说明	16
4	1.6.5	模块校准及使用注意事项	18
5	模块	快拆卸说明	19
6	句装	<u> </u>	19

UM220-INS Series Module User Manual

6.1	标签说明	19
6.2	包装说明	19
7	清洗	20
8	回流焊	20

1 产品介绍

1.1 概述

UM220-INS NL、UM220-INS NF 是和芯星通科技(北京)有限公司针对车载导航应用推出的 GNSS+MEMS 组合导航模块。模块基于完全自主知识产权的多系统、低功耗、高性能 SOC 芯片- UFirebird^R 设计,内置 6 轴 MEMS 器件,支持多系统联合定位或单系统独立定位,直接输出 GNSS 与 MEMS 组合定位结果,即使在隧道、地下车库也能够实现连续定位。

UM220-INS 模块使用的 GNSS 芯片设计符合 AEC-Q100,生产过程符合 IATF 16949。

图 1-1 UM220-INS 系列模块外观(左: UM220-INS NL 模块,右: UM220-INS NF 模块)

		规格		系统*			接口		数据更新率*		
型묵	PN	专业级	车规级	GPS	BDS*	GLONASS*	Galileo	ozss	UART1	UART2	
UM220-INS NL	231040800 0026	•		•	•	•	•	•	•	•	1Hz
UM220-INS NF	231040800 0025		•	•	•	•	•	•	•	•	1Hz

UM220-INS 模组支持多系统联合定位和单北斗系统定位,具体定位组合如下:

- GPS L1+SBAS+QZSS
- GPS+GLONASS+Galileo+SBAS+QZSS
- GPS+BDS+Galileo+SBAS+QZSS(默认模式)
- BDS
- ※ QZSS 和 SBAS 仅在 GPS 开启条件下可用。

BDS 系统与 GLONASS 系统不能并行运行 模块默认数据更新率为 1Hz,可配置成 10Hz

1.2 关键指标

电源						
电压	+3.0 V~3.6	V VDC				
功耗 ¹	90 mW					
射频输入						
频率	1559 MHz~	1605 MHz				
驻波比	≤2.5					
输入阻抗	50 Ω					
天线增益	15 dB~30 c	В				
物理特性						
尺寸	16.0 mm*1	2.2 mm*2.6 mm				
环境指标						
工作温度	-40°C ~ +85	5°C				
存储温度	-45°C ~ +90	o°C				
输入/输出数据接口						
UART	2个串口,	LVTTL 电平。波特率 4800~	460800 bps			
GNSS 性能						
	BDS B1: 15	61.098 MHz				
	GPS L1: 15	75.42 MHz				
频点						
	GLUNASS I	_1: 1602+0.5625*k (MHz)				
	Galileo E1:	1575.42 MHz				
组合系统		GPS+GLONASS+Galileo	GPS+BeiDou+Galileo			
	冷启动	30 s	30 s			
首次定位时间	热启动	1 s	1 s			
TTFF	重捕获	1 s	1 s			
	AGNSS	5 s	5 s			
定位精度2		2 m	2 m			
测速精度(RMS)		0.02 m/s	0.01 m/s			

¹连续定位,典型值

UC-00-M10 CH R3.10 产品介绍 2

² CEP, 50%

		GPS+GLO +GA	GPS+BD +GA	BD	GPS	GLO			
	跟踪	-161 dBm	-161 dBm	-159 dBm	-161 dBm	-158 dBm			
灵敏度	捕获	-147 dBm	-147 dBm	-144 dBm	-147 dBm	-142 dBm			
	热启动	-154 dBm	-154 dBm	-149 dBm	-154 dBm	-148 dBm			
	重捕获	-157 dBm	-157 dBm	-156 dBm	-157 dBm	-153 dBm			
纯惯导定位误差	É	典型值,(SNSS 中断时行	亍驶距离的 3°	%				
时间脉冲信号频	[李	1 Hz							
最大导航率(测	川量率)	10 Hz							
定位延迟		100 ms nominal							
最大传感器测量信息输出率		10 Hz							
时间脉冲信号精	度		RMS 30 ns (GPS+BD) 99% 50 ns (GPS+BD)						
导航数据格式3		NMEA 0183,Unicore Protocol							
		加速度≤4	g						
运行范围		高程 5000	高程 50000 m						
		速度 515 m/s							

1.3 产品概述

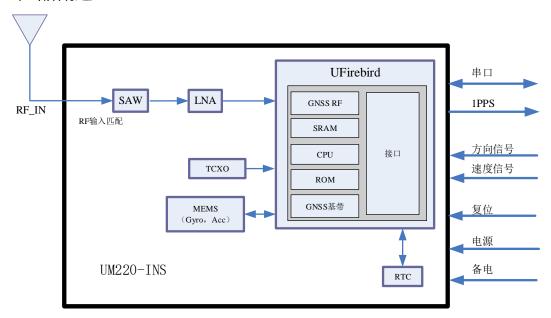


图 1-2 UM220-INS 结构框图

UC-00-M10 CH R3.10 产品介绍 3

_

³ 用户可配置,详细参见《Unicore UM220-INS Protocol Specification》文档

串口(UART)

UM220-INS 系列模块串口 1 为主串口,支持数据传输、固件升级功能,输入/输出信号类型为 LVTTL 电平。默认波特率为 115200 bps,最高可设为 460800 bps,串口波特率可由用户自行配置。设计产品时,为支持固件升级功能,须确保串口 1 连接 PC 或外部处理器。

串口 2 仅支持数据传输,不支持固件升级,仅为备用。

里程计信号(FWD/WHEELTICK)

UM220-INS 系列模块具有里程计输入接口,包括方向信号(FWD)和速度脉冲信号(WHEELTICK),有效的方向和速度脉冲信号,有助于提升模组的定位轨迹准确度。

惯性传感器 (MEMS)

UM220-INS 系列模块内置六轴 MEMS,三轴陀螺(Gyro)和三轴加速度计(Acc)。 MEMS 可提供载体姿态及速度变化信息,与 GNSS 信息进行组合导航定位解算,获得比单独卫星导航更好的定位体验,尤其是在卫星信号丢失或较弱的场景,如隧道、地库及城市峡谷等。

秒脉冲(1PPS)

UM220-INS 系列模块提供 1 个输出脉宽和极性可调的 1PPS 信号。 1PPS 信号不可做授时应用。

复位 (nRESET)

低电平有效, 电平有效时间不少于 10 ms。

2 产品安装

2.1 安装准备

UM220-INS 系列模块上的多个器件易受静电损害,需要对 IC 电路和其他器件进行静电防护。在打开防静电塑料盒前请做好如下保护措施:

- 1) 请按正确顺序执行 2.2 节的操作步骤。
- 2) 静电放电(ESD)可能会导致器件损害。本章提及的所有操作均应在防静电工作台上进行,同时使用防静电手环和导电泡沫垫。如果没有防静电工作台,请佩戴防静电手环并将其另一端连接到金属架上以起到防静电作用。
- 3) 握住模块边缘,勿直接接触其上的元器件。
- **4)** 请仔细检查模块是否有明显松动或已损坏器件。如有问题请联系本公司或当地经销商。
- 图 2-1 展示了 UM220-INS 系列模块 EVK 评估套件的典型安装情况。

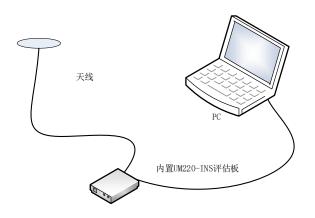


图 2-1 UM220-INS 系列模块典型安装图

为确保安装正确,请提前准备好下列设备:

- UM220-INS 模块对应评估套件(含电源)
- UM220-INS 系列模块对应用户手册
- 和芯星通 uSTAR 软件包

UC-00-M10 CH R3.10 产品安装 5

- 合格的 GNSS 天线,支持 GPS L1 和 BDS B1
- 电源通信一体 USB 线,直连串口线
- 有串口的台式机或笔记本电脑(要求安装 Win7 及以上操作系统)

请保留好包装箱和防静电吸塑盒,以备存储和搬运之用

2.2 硬件安装

上述准备完成后,请按如下步骤安装,仅用于卫星导航测试,如需验证组合导航性能, 请参照 4.6 章节内容进行安装、测试:

步骤 1: 确保做好充分的防静电措施,如防静电手环、工作台表面接地等;

步骤 2: 打开 UM220-INS 系列模块评估套件,取出评估板;

步骤 3: 选择增益适当的 GNSS 天线,在非遮挡区域将其固定好,使用适当的线缆连

接天线和 UM220 评估板;

步骤 4: 使用 USB 线或者直连串口线连接 PC 至 EVK 端的串口;

步骤 5: 打开 PC 上的 uSTAR 软件;

步骤 6: 通过 uSTAR 控制接收机,显示星座视图、消息及接收机状态等。

3 技术指标

3.1 电气特性

绝对最大值

参数	最小值	最大值	单位	说明
模块供电(VCC)	-0.5	3.6	٧	模块主供电电压
备用电池(V_BCKP)	-0.5	3.6	V	RTC 后备电池供电电压
数字信号管脚电压 4	-0.5	3.6	V	数字信号管脚电压
天线输入功率(RF_IN)	_	+3	dBm	天线允许最大输入功率
存储温度 T _{STG}	-45	+90	°C	存储温度
回流焊温度 T _{SLDR}	_	+260	°C	回流焊温度

3.2 运行条件

参数	符号	最小值	典型值	最大值	单位	条件
供电电压	Vcc	3.0	3.3	3.6	٧	
电压波纹	Vp-p			50	mV	
峰值电流	Iccp			52	mA	Vcc=3.0 V
跟踪平均电流	I _{ACQ}	28	30	32	mA	Vcc=3.0 V
输入管脚低电平	V _{IL}	-0.3		0.2*Vcc	٧	
输入管脚高电平	V _{IH}	0.7*Vcc		Vcc+0.3	٧	
输出管脚低电平	V _{OL}	0		0.4	٧	lout=-2 mA
输出管脚高电平	V _{OH}	Vcc-0.4		Vcc	٧	lout=2 mA
天线增益5	G _{ANT}	15	20	30	dB	
第一级器件噪声系数	NF		1.9		dB	
运行温度	T _{OPR}	-40		+85	°C	

3.3 外形尺寸

参数	最小值(mm)	典型值(mm)	最大值(mm)
Α	15.9	16.0	16.5
В	12	12.2	12.4
С	2.4	2.6	2.8
D	0.9	1.0	1.3

⁴数字信号管脚包括 nRESET,TIMEPULSE,WHEELTICK,TXD2,RXD2,FWD,TXD1,RXD1。

⁵天线增益范围指模块的 RF_IN 之前允许的前置低噪声放大器的增益范围。

参数	最小值(mm)	典型值(mm)	最大值(mm)
Е	1.0	1.1	1.2
F	2.9	3.0	3.1
G	0.9	1.0	1.3
Н	0.9	1.0	1.1
K(邮票孔外沿)	0.7	0.8	0.9
N(邮票孔内沿)	0.4	0.5	0.6
М	0.8	0.9	1.0

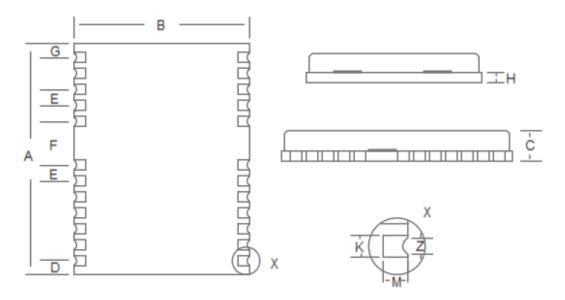


图 3-1 外形尺寸

3.4 引脚功能描述

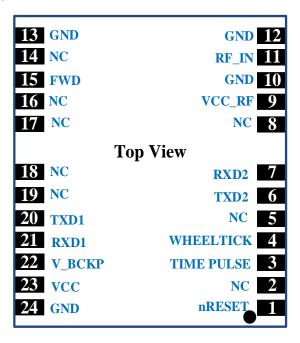


图 3-2 管脚图

序号	名称	1/0	电平标准	描述
1	nRESET	I	LVTTL	复位引脚,低电平有效, 不用则悬空
2	NC	_	_	保留引脚,悬空处理
3	TIMEPULSE	0	LVTTL	秒脉冲(1PPS)
4	WHEELTICK	I	LVTTL	里程计速度脉冲输入,不 用则悬空,强烈推荐使 用,最大可接受脉冲频率 为5KHz,最小脉冲宽度大 于100us; 里程计信号不正确,会导 致产品的使用出现严重问 题,须务必确保信号的正 确性。
5	NC	_	_	保留引脚,悬空处理
6	TXD2	0	LVTTL	串口2数据发送
7	RXD2	I	LVTTL	串口2数据接收
8	NC	_	_	保留引脚,悬空处理
9	VCC_RF	0		天线馈电输出
10	GND	_	_	地

UC-00-M10 CH R3.10 技术指标 9

序号	名称	1/0	电平标准	描述
11	RF_IN	1	_	GNSS信号输入
12	GND	_	_	地
13	GND	_	_	地
14	NC	_	_	保留管脚,悬空处理。
				里程计方向输入,不用则
				悬空,强烈推荐使用
				高电平: 前进
15	FWD		LVTTL	低电平: 倒车
15	FWD		LVIIL	里程计信号不正确,会导
				致产品的使用出现严重问
				题,须务必确保信号的正
				确性。
16	NC	_	_	保留管脚,悬空处理
17	NC	_	_	保留管脚,悬空处理
18	NC	_	_	保留管脚,悬空处理
19	NC	_	_	保留管脚,悬空处理
20	TXD1	0	LVTTL	串口 1 数据发送
21	RXD1	1	LVTTL	串口1数据接收
				备电,用于热启动功能;
22	V_BCKP	1	1.65V~3.6V	不使用热启动功能时需接
				VCC,不可悬空或接地
23	VCC	_	3.0V~3.6V	供电
24	GND	_	_	地

3.5 PCB 封装说明

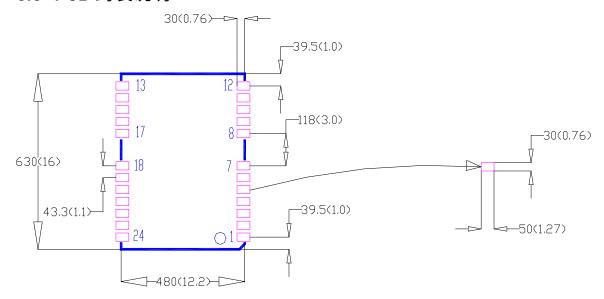


图 3-3 UM220-INS 系列模块推荐 PCB 封装设计(尺寸单位: mil, 括号内单位: mm)

在设计 PCB 阻焊时,要确保 UM220-INS 系列模块下方区域完全涂盖阻焊层。

4 硬件设计

4.1 常规注意事项

为使 UM220-INS 系列模块能够正常工作,需要正确连接以下信号:

模块 VCC 上电具有良好的单调性,下冲与振铃保障在 5%VCC 范围内。若 VCC 掉电后重新上电,掉电时间须超过 10 ms。若 VCC 供电不能满足如前描述,UM220-INS 系列模块有一定的概率不能正常启动。

模组未上电时,需保证电源及 GPIO(PPS、TX、RX、RESET)处于高阻态或低电平,以避免漏电导致的模组工作异常。

如果使用了串口 2 和秒脉冲(1PPS),须在 TXD2 处串接 1 K Ω 电阻,在秒脉冲(1PPS)处串接 4.7 K Ω 电阻。

- 将模块所有 GND 引脚接地。
- 给模块提供可靠的电源给到 VCC 引脚。
- 连接 RF_IN 信号至天线,线路保持 50 欧姆阻抗匹配。
- 确保串口 1 连接到 PC 或外部处理器,用户可以用此串口接收定位信息数据。固件

UC-00-M10 CH R3.10 硬件设计 11

升级也需要通过该串口进行。

为获得良好性能,设计中还应特别注意如下几项:

- 供电:良好的性能需要稳定及低纹波的电源来保证。
- 采用 LDO 供电,以保证供电纯净。
- 布局上尽量将 LDO 靠近模块放置。
- 加宽电源走线或采用分割铺铜面来传输电流。
- 电源走线避免经过大功率与高感抗器件如磁性线圈。
- 供电纹波峰峰值不超过 50 mV。
- 串口:确保主设备与 UM220-INS 系列模块波特率对应一致。
- 天线接口:天线线路注意阻抗匹配,尽量短且顺畅,避免走锐角。
- 天线位置:为了保证较好的信噪比,确保天线与电磁辐射源有很好的隔离,特别是 1548 MHz~1605 MHz 频段的电磁辐射。
- 尽量避免在 UM220-INS 系列模块正下方走线。
- ◆ 本模块是温度敏感设备,温度剧烈变化会导致其性能降低,使用中尽量远离高温气流与大功率发热器件。

4.2 天线

UM220-INS 系列模块若采用+3 V 的有源天线,建议用 VCC_RF 引脚输出通过馈电电感给天线供电。

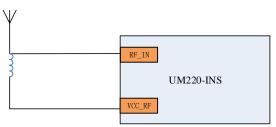


图 4-1 UM220-INS 系列模块 +3 V 有源天线方案

注:若用户对 ESD 要求较高(大于±2000V),则用户需要自行设计为天线供电而不能使用 VCC_RF 给天线供电。用户自行设计可以选用 ESD 防护等级较高的供电芯片;必要时,还可以在供电电路上增加气体放电管、压敏电阻、 TVS 管等大功率的防护器件,这可进一步提高系统对 ESD 和其他外部电应力(EOS, Electrical Over-Stress)的防护能力。

UM220-INS 系列模块若采用非+3 V 的有源天线,则把天线所需偏置电压 V_BIAS 通过 馈电电感给天线供电。

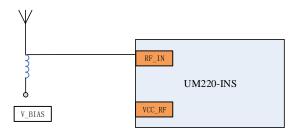


图 4-2 UM220-INS 系列模块其他电压范围的有源天线方案

UM220-INS 系列模块若采用无源天线,则把天线与 RF_IN 管脚直接相连,而 VCC_RF 悬空即可。需要注意,相对于有源天线而言,使用无源天线可能会带来 GNSS 性能下降。

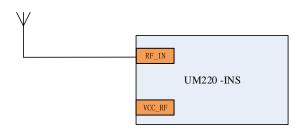


图 4-3 UM220-INS 系列模块无源天线方案

4.3 串口(UART)参考设计

UM220-INS 系列模块的串口是 LVTTL 电平,若需要和 PC 连接,需要通过 RS232 电平转换。

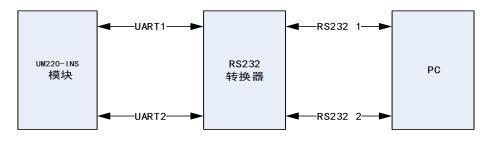


图 4-3 串口连接到 PC

4.4 里程计的连接

UM220-INS 系列模块具有与里程计连接的方向(FWD)和速度脉冲(WHEELTICK) 信号,模块如果获得有效的方向和速度脉冲信号,会有助于模组定位轨迹准确度的提升。

车辆的里程计信号一般是 12 V 电平,且信号质量较差。所以车辆里程计信号一般需要信号滤波、光耦隔离和电平转换,才能提供给 UM220-INS 系列模块使用。

UC-00-M10 CH R3.10 硬件设计 13

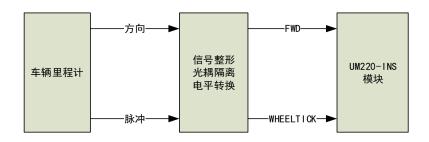


图 4-4 里程计的连接

4.5 模块坐标与车体坐标

UM220-INS 系列模块坐标和车体坐标须保持一致,如不能满足须按照对应协议手册中的 CFGROTAT 命令进行配置。 图 4-5 和图 4-6 分别是模块坐标系与车体坐标系。

图 4-5 模块坐标系

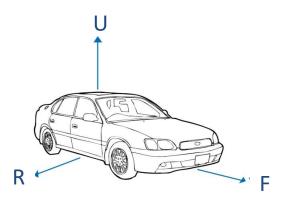


图 4-6 车体坐标系

模块屏蔽盖法向为 Z 轴正向,模块长轴方向为 Y,短轴方向为 X。

模块坐标系与车辆坐标系一致的定义为: X 轴与 R 轴同向平行,Y 轴与 F 轴同向平行,Z 轴与 U 轴同向平行。

4.6 模块安装

UM220-INS 系列模块须保持与车体刚性连接固定安装。

天线安装尽量保持正面朝上,且固定安装;保障天线所处环境仰角大于 15°空间无遮挡。 天线所处环境中 1568 ± 20MHz 频率内无强干扰源。

4.6.1 安装说明

UM220-INS 系列模块必须与车辆载体固连,避免模块与车体之间发生任何的位移或者大的震动。UM220-INS 系列模块不能安装在车辆悬挂部分(具有弹性部分)。在车辆行驶过程中,任何相对于车体坐标系的位置变化,特别是方向的变化,将导致模块工作异常。

4.6.2 模块安装角定义

计车体的坐标系 RFU,模块坐标系 xyz,如图 4-6 和 4-7 所示,模块安装角 angleR,angleF,angleU 定义如下:

- 1. 使 xyz 与 RFU 两坐标系初始状态重合
- 2. 沿 z 轴旋转模块 y 角度
- 3. 沿新的 x 轴旋转模块 α 角度
- 4. 沿新的 y 轴旋转模块 β 角度
- 5. 此时模块与实际使用的安装状态相同,则有:angleR=α,angleF=β,angleU=γ

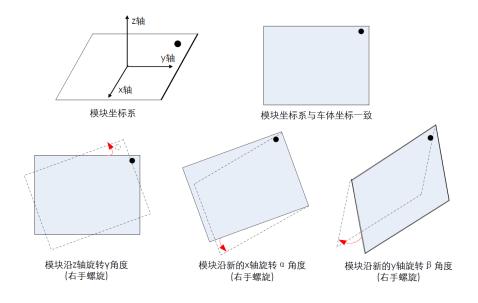


图 4-7 模块坐标系 (RFU)

4.6.3 模块安装方式

● 模块自由安装(默认模式)

UM220-INS 系列模块包含一个三轴陀螺仪和一个三轴加速度计,并内置精细自校准算法,支持模块以相对于车体坐标系的任意安装角进行自由安装。例如:完全水平安装、倾斜一定角度安装和翻转安装等。

● 模块固定安装

按照安装角定义规则,将准确的安装角度手动配置到模组中,此安装方法校准时间较快。

手动配置安装角时,模块允许的最大角度误差为±5度。

4.6.4 相关消息协议说明

1. CFGROTAT

消息格式 \$ CFGROTAT, angleR, angleF, angleU, mode

描述: 设定或输出模块相对于车体坐标的安装角配置

参数:

- ◆ angleR, angleF, angleU 定义如 4.6.2,单位为 0.01°
- ◆ mode 为安装角配置模式:
 - 0-普通安装模式,输入安装角精度较为粗糙(10deg 以内)
 - 2-自动安装模式,无需输入安装角

备注:

- 1) 固定安装模式,选择 0,自由安装选择 2;
- 2) 用户将实际安装角 angleR, angleF, angleU 输入到模组中,配置完成后,需通过 CFGSAVE 命令保存至 Flash,如不保存下次开机需重新识别。
- 3) 无论在正常运行期间还是在发送保存命令断电并重新开机以后,任何对惯导进行的配置动作都会导致惯导模块重新初始化,之前已经做完的或正在进行的标定操作都会被重置;

2. SNRSTAT

消息格式 \$SNRSTAT,insstatus,odostatus, InstallState, Mapstat

描述: 输出初始化状态(固定安装模式与自由安装模式通用)

参数:

◆ insstatus: 惯导初始化状态

-1: IMU 器件故障

0: 关闭

1: 初始化

2: 已知安装角

3: 初始化完成

◆ odostatus: 里程计初始化状态

-1: 里程计器件故障

0: 关闭

1: 刻度因数初始化

2: 刻度因数初始化完成

3: 刻度因数标定完成

♦ InstallState:

-1: IMU 器件故障,无法进行安装角估计

0:校正进行中

1: 当前卫星信息质量不足,需要更好的星况条件

2: 当前载体机动条件不足,需要进行加速行驶

3: 当前载体速度过低,需要提升行驶速度

◆ Mapstat:

-1: 未配置串口输入 MAP 信息

0: 串口未接收到 MAP 信息或 MAP 信息发送超时

1:接收到 MAP 信息但未应用于组合导航

2:接收到 MAP 信息并应用于组合导航

全向自由安装模式测试方法

- 1. 将模块完全自由安装
- 2. 输入命令\$CFGROTAT,0,0,0,2(若为出厂模式,则无需配置)
- 3. 输入命令\$ CFGSAVE(若为出厂模式,则无需配置)
- 4. 自校准过程需满足以上停车、卫星质量、机动等条件,通过\$SNRSTAT 输出观察自校准是否完成,insstatus 变为 3 时,为自校准完成。
 - 5. 确定自校准完成后再进入卫星质量较差的路段
 - 6. 如需地库热启动功能,需要将 Vbackup 持续供电;

4.6.5 模块校准及使用注意事项

● 模块自校准

在 UM220-INS 系列模块安装之后需要等待模块完成自校准以确保模块精确地输出。 在自校准过程中,模块将会对自身安装状态参数和传感器参数进行估计。在自校准完成之 前,定位为纯卫导模式;在自校准完成之后,定位为卫导与惯导紧组合模式。

● 完成自校准条件

- 上电后,自校准开始,停车不少于三分钟;
- 自校准过程中保证良好的卫星可见性(可见卫星数不少于 6 颗,且 Cn0 在 30dB以上),卫星观测质量越好,校准越快;
- 在正常行驶的前提下,进行不少于 5 次的 90 度转弯机动(固定安装无需此项操作);
- 在正常行驶的前提下,直行机动下加速度行驶,行驶速度保持在 36 km/h 以上,加减速次数越多(加速度>0.5m/s²,加速次数不少于 10 次),高速行驶时间越长,校准越快。

惯性导航第一次对准后(insstatus 为 3),仍需在正常开阔环境下行驶 15 分钟左右,使惯导器件训练充足,如第一次对准后立即进入隧道、车库等复杂环境,有可能会导致导航精度略差。

模块的正常使用仅需要完成一次自校准过程。

● 惯导模组完成校准后,需要完全断电后,才可以进行移动,包括主电 VCC 以及 备电 V_BACKUP。

5 模块拆卸说明

需要拆卸模块时,建议使用电烙铁融化模块两侧引脚焊锡、再用镊子将模块取下。请 勿使用其他方式拆卸模块(例如热风枪吹下模块),均可能导致模块损坏。

6 包装

6.1 标签说明

6.2 包装说明

UM220-INS 系列模块使用载带、卷盘方式(适用于主流表面贴装设备),包装在真空 密封的铝箔防静电袋中,内附干燥剂防潮。采用回流焊工艺焊接模块时,请严格遵守 IPC 标准对模块进行湿度管控,由于载带等包装材料只能承受 65 摄氏度的温度,在进行烘烤作业时需要将模块从包装中取出。

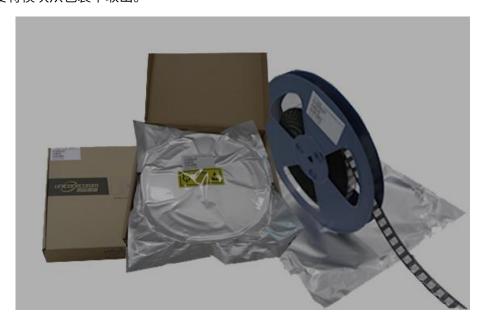


图 6-1 UM220-INS 系列模块包装示例

UC-00-M10 CH R3.10 模块拆卸说明 19

项目	描述
模块数量	500 片/卷
卷盘尺寸	料盘: 13 寸
	外径 330 mm,内径 100 mm,宽 24 mm,壁厚 2.0 mm
载带	模块间距(中心距): 20 mm

UM220-INS 系列模块 MSL 等级为 3 级,烘焙要求请参照 IPC/JEDEC 相关标准进行,用户可至网页 www.jedec.org 自行下载查看。

UM220-INS 系列模块的贮藏时间(shelf year)为 1 年。

7 清洗

请勿用酒精或其他有机溶剂清洗,可能会导致焊剂残留物今日屏蔽壳里,引起发霉等问题发生。

8 回流焊

为避免器件脱落,模块在进行焊接时应放置在主板上部。回流焊温度曲线建议采用如下图 8-1 所示(锡膏建议使用 M705-GRN360),注意:模块只能过炉焊一次。

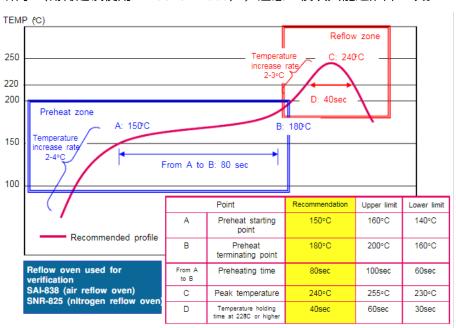


图 8-1 回流焊温度曲线

注:钢网的开孔方式需要满足客户自身设计要求以及检验规范,网板厚度需使用 **0.15mm** 以上,推荐使用 **0.18mm**。

和芯星通科技(北京)有限公司

Unicore Communications, Inc.

北京市海淀区丰贤东路 7 号北斗星通大厦三层 F3, No.7, Fengxian East Road, Haidian, Beijing, P.R.China, 100094

www.unicorecomm.com

Phone: 86-10-69939800

Fax: 86-10-69939888

info@unicorecomm.com

www.unicorecomm.com